Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 107(5): 942-952, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33157007

RESUMO

The second Newborn Sequencing in Genomic Medicine and Public Health (NSIGHT2) study was a randomized, controlled trial of rapid whole-genome sequencing (rWGS) or rapid whole-exome sequencing (rWES) in infants with diseases of unknown etiology in intensive care units (ICUs). Gravely ill infants were not randomized and received ultra-rapid whole-genome sequencing (urWGS). Herein we report results of clinician surveys of the clinical utility of rapid genomic sequencing (RGS). The primary end-point-clinician perception that RGS was useful- was met for 154 (77%) of 201 infants. Both positive and negative tests were rated as having clinical utility (42 of 45 [93%] and 112 of 156 [72%], respectively). Physicians reported that RGS changed clinical management in 57 (28%) infants, particularly in those receiving urWGS (p = 0.0001) and positive tests (p < 0.00001). Outcomes of 32 (15%) infants were perceived to be changed by RGS. Positive tests changed outcomes more frequently than negative tests (p < 0.00001). In logistic regression models, the likelihood that RGS was perceived as useful increased 6.7-fold when associated with changes in management (95% CI 1.8-43.3). Changes in management were 10.1-fold more likely when results were positive (95% CI 4.7-22.4) and turnaround time was shorter (odds ratio 0.92, 95% CI 0.85-0.99). RGS seldom led to clinician-perceived confusion or distress among families (6 of 207 [3%]). In summary, clinicians perceived high clinical utility and low likelihood of harm with first-tier RGS of infants in ICUs with diseases of unknown etiology. RGS was perceived as beneficial irrespective of whether results were positive or negative.


Assuntos
Tomada de Decisão Clínica/métodos , Gerenciamento Clínico , Doenças Genéticas Inatas/diagnóstico , Testes Genéticos , Genoma Humano , Sequenciamento Completo do Genoma/métodos , Mapeamento Cromossômico , Estado Terminal , Feminino , Doenças Genéticas Inatas/genética , Humanos , Lactente , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Modelos Logísticos , Masculino , Estudos Prospectivos , Fatores de Tempo
2.
Am J Hum Genet ; 105(4): 719-733, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564432

RESUMO

The second Newborn Sequencing in Genomic Medicine and Public Health study was a randomized, controlled trial of the effectiveness of rapid whole-genome or -exome sequencing (rWGS or rWES, respectively) in seriously ill infants with diseases of unknown etiology. Here we report comparisons of analytic and diagnostic performance. Of 1,248 ill inpatient infants, 578 (46%) had diseases of unknown etiology. 213 infants (37% of those eligible) were enrolled within 96 h of admission. 24 infants (11%) were very ill and received ultra-rapid whole-genome sequencing (urWGS). The remaining infants were randomized, 95 to rWES and 94 to rWGS. The analytic performance of rWGS was superior to rWES, including variants likely to affect protein function, and ClinVar pathogenic/likely pathogenic variants (p < 0.0001). The diagnostic performance of rWGS and rWES were similar (18 diagnoses in 94 infants [19%] versus 19 diagnoses in 95 infants [20%], respectively), as was time to result (median 11.0 versus 11.2 days, respectively). However, the proportion diagnosed by urWGS (11 of 24 [46%]) was higher than rWES/rWGS (p = 0.004) and time to result was less (median 4.6 days, p < 0.0001). The incremental diagnostic yield of reflexing to trio after negative proband analysis was 0.7% (1 of 147). In conclusion, rapid genomic sequencing can be performed as a first-tier diagnostic test in inpatient infants. urWGS had the shortest time to result, which was important in unstable infants, and those in whom a genetic diagnosis was likely to impact immediate management. Further comparison of urWGS and rWES is warranted because genomic technologies and knowledge of variant pathogenicity are evolving rapidly.


Assuntos
Sequenciamento do Exoma , Sequenciamento Completo do Genoma , Testes Genéticos , Humanos , Lactente , Recém-Nascido
3.
Pediatr Crit Care Med ; 20(11): 1007-1020, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31246743

RESUMO

OBJECTIVES: Genetic disorders are a leading contributor to mortality in the neonatal ICU and PICU in the United States. Although individually rare, there are over 6,200 single-gene diseases, which may preclude a genetic diagnosis prior to ICU admission. Rapid whole genome sequencing is an emerging method of diagnosing genetic conditions in time to affect ICU management of neonates; however, its clinical utility has yet to be adequately demonstrated in critically ill children. This study evaluates next-generation sequencing in pediatric critical care. DESIGN: Retrospective cohort study. SETTING: Single-center PICU in a tertiary children's hospital. PATIENTS: Children 4 months to 18 years admitted to the PICU who were nominated between July 2016 and May 2018. INTERVENTIONS: Rapid whole genome sequencing with targeted phenotype-driven analysis was performed on patients and their parents, when parental samples were available. MEASUREMENTS AND MAIN RESULTS: A molecular diagnosis was made by rapid whole genome sequencing in 17 of 38 children (45%). In four of the 17 patients (24%), the genetic diagnoses led to a change in management while in the PICU, including genome-informed changes in pharmacotherapy and transition to palliative care. Nine of the 17 diagnosed children (53%) had no dysmorphic features or developmental delay. Eighty-two percent of diagnoses affected the clinical management of the patient and/or family after PICU discharge, including avoidance of biopsy, administration of factor replacement, and surveillance for disorder-related sequelae. CONCLUSIONS: This study demonstrates a retrospective evaluation for undiagnosed genetic disease in the PICU and clinical utility of rapid whole genome sequencing in a portion of critically ill children. Further studies are needed to identify PICU patients who will benefit from rapid whole genome sequencing early in PICU admission when the underlying etiology is unclear.


Assuntos
Doenças Genéticas Inatas/diagnóstico , Sequenciamento Completo do Genoma , Adolescente , Criança , Pré-Escolar , Estado Terminal/terapia , Feminino , Humanos , Lactente , Unidades de Terapia Intensiva Pediátrica/estatística & dados numéricos , Masculino , Medicina de Precisão/métodos , Estudos Retrospectivos
4.
Br J Pharmacol ; 147(1): 73-82, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16284629

RESUMO

Recently, a large family of G-protein-coupled receptors called Mas-related genes (Mrgs), which is selectively expressed in small-diameter sensory neurons of dorsal root ganglia, was described. A subgroup of human Mrg receptors (MrgX1-X4) is not found in rodents and this has hampered efforts to define the physiological roles of these receptors. MrgX receptors were cloned from rhesus monkey and functionally characterized alongside their human orthologs. Most of the human and rhesus MrgX receptors displayed high constitutive activity in a cellular proliferation assay. Proliferative responses mediated by human or rhesus MrgX1, or rhesus MrgX2 were partially blocked by pertussis toxin (PTX). Proliferative responses mediated by rhesus MrgX3 and both human and rhesus MrgX4 were PTX insensitive. These results indicate that human and rhesus MrgX1 and MrgX2 receptors activate both Gq- and Gi-regulated pathways, while MrgX3 and MrgX4 receptors primarily stimulate Gq-regulated pathways. Peptides known to activate human MrgX1 and MrgX2 receptors activated the corresponding rhesus receptors in cellular proliferation assays, Ca(2+)-mobilization assays, and GTP-gammaS-binding assays. Cortistatin-14 was selective for human and rhesus MrgX2 receptors over human and rhesus MrgX1 receptors. BAM22 and related peptides strongly activated human MrgX1 receptors, but weakly activated rhesus MrgX1, human MrgX2, and rhesus MrgX2 receptors. These data suggest that the rhesus monkey may be a suitable animal model for exploring the physiological roles of the MrgX receptors.


Assuntos
Macaca mulatta/genética , Família Multigênica , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Sequência Conservada , Humanos , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Fatores de Transcrição/fisiologia
5.
Biochem Pharmacol ; 67(7): 1279-84, 2004 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15013843

RESUMO

Many naturally occurring peptides exhibit a high degree of promiscuity across G-protein coupled receptor subtypes. The degree to which this phenomenon occurs, and its physiological significance is not well characterized. In addition, many 'orphan' peptides exist for which there are no known receptors. Therefore, to identify novel interactions between biologically active peptides and G-protein coupled receptors, a library of nearly 200 peptides was screened against the human calcitonin (hCTr), human Parathyroid Hormone (PTH1R), human Corticotropin Releasing Factor (CRF1), and the human Glucagon-like peptide (GLP1) receptors using a cell-based functional assay (Receptor Selection and Amplification Technology). Functional profiling revealed that the 'orphan peptide' PHM-27 selectively activated the hCTr; no activity was observed at the PTH1, CRF1, or GLP1 receptors. PHM-27 was a potent agonist at the hCTr, with similar efficacy as human calcitonin, and a potency of 11 nM. These results were confirmed in cyclic AMP assays. Responses to calcitonin and PHM-27 could be suppressed by the antagonist salmon calcitonin (8-32). In competition binding studies, salmon calcitonin (8-32), calcitonin, and PHM-27 were each able to inhibit (125)I-calcitonin from cell membranes containing transiently expressed hCTr. These results indicate that the orphan peptide PHM-27 is a potent agonist at the hCTr.


Assuntos
Peptídeo PHI/farmacologia , Receptores da Calcitonina/agonistas , Células 3T3 , Sequência de Aminoácidos , Animais , Ligação Competitiva , Células Cultivadas , AMP Cíclico/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Receptores da Calcitonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...